The upper envelope of positive self-similar Markov processes

نویسندگان

  • Juan Carlos Pardo Millan
  • Juan Carlos Pardo
  • J. C. Pardo
چکیده

We establish integral tests and laws of the iterated logarithm at 0 and at +∞, for the upper envelope of positive self-similar Markov processes. Our arguments are based on the Lamperti representation, time reversal arguments and on the study of the upper envelope of their future infimum due to Pardo [19]. These results extend integral test and laws of the iterated logarithm for Bessel processes due to Dvoretsky and Erdös [10] and stable Lévy processes conditioned to stay positive with no positive jumps due to Bertoin [1]. Lévy process, Lamperti representation, First and last passage time, integral test, law of the iterated logarithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the future infimum of positive self-similar Markov processes

On the future infimum of positive self-similar Markov processes. Abstract We establish integral tests and laws of the iterated logarithm for the upper envelope of the future infimum of positive self-similar Markov processes and for increasing self-similar Markov processes at 0 and +∞. Our proofs are based on the Lamperti representation and time reversal arguments due to Chaumont and Pardo [9]. ...

متن کامل

J an 2 00 6 The lower envelope of positive self - similar Markov processes . February 2 , 2008

We establish integral tests and laws of the iterated logarithm for the lower envelope of positive self-similar Markov processes at 0 and +∞. Our proofs are based on the Lamperti representation and time reversal arguments. These results extend laws of the iterated logarithm for Bessel processes due to Dvoretsky and Erdös [11], Motoo [17] and Rivero [18]. time reversal, integral test, law of the ...

متن کامل

Optimal prediction for positive self-similar Markov processes

This paper addresses the question of predicting when a positive self-similar Markov process X attains its pathwise global supremum or infimum before hitting zero for the first time (if it does at all). This problem has been studied in [9] under the assumption that X is a positive transient diffusion. We extend their result to the class of positive self-similar Markov processes by establishing a...

متن کامل

2 00 7 On continuous state branching processes : conditioning and self - similarity . December 10 , 2008

In this paper, for α ∈ (1, 2], we show that the α-stable continuous-state branching processes and the associated process conditioned never to become extinct are positive self-similar Markov processes. Understanding the interaction of the Lamperti transformation for continuous state branching processes and the Lamperti transformation for positive self-similar Markov processes permits access to a...

متن کامل

A Ciesielski-Taylor type identity for positive self-similar Markov processes

The aim of this note is to give a straightforward proof of a general version of the Ciesielski-Taylor identity for positive self-similar Markov processes of the spectrally negative type which umbrellas all previously known Ciesielski-Taylor identities within the latter class. The approach makes use of three fundamental features. Firstly a new transformation which maps a subset of the family of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007